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The Williams-Watts (WW) relaxation function has been widely used to describe the relaxation 
behaviour of many systems. In the present work the range of applicability of the WW response was 
extensively tested by the analysis of experiments in both the time and the frequency domains. On 
the other hand, the analysed experiments covered a wide time-scale for the characteristic 
relaxation times. Some related topics were also considered, i.e. our procedures in obtaining the 
associated activation energy spectra or the distribution of relaxation times. The relationship 
between time-domain and frequency-domain relaxation responses was also analysed. In light of 
our results the universality of the WW response, appears to be good at least for the time-scales and 
the different probes covered by our experiments. 

1. I n t r o d u c t i o n  
The relaxation phenomena include all the processes 
establishing equilibrium in a system which is in a non- 
equilibrium state. They may be observed on a wide 
variety of phenomena and materials. Among the relax- 
ation processes, we selected for consideration the most 
representative of them, namely mechanical, structural 
and dielectric relaxation. 

Analysis of relaxation results has often used empiri- 
cal response functions [1, 2]. In particular, the empiri- 
cal function proposed by Williams and Watts (WW) 
[3,1 for the fitting of dielectric loss and dispersion, 
provides an excellent description for the analysis of 
many glassy materials in the vicinity of the glass 
transition temperature, Tg [4-6,1. The relaxation of 
spin-glasses near the freezing temperature is also well 
described by the WW law [-7, 8]. In the spin-glasses, 
their empirical WW relaxation function is frequently 
termed the stretched exponential function. Montroll 
and Bendler [9] and MacDonald [10] have empha- 
sized how the L6vy-stable distribution of relaxation 
times leads to the WW response. The latter author 
claimed only limited applicability of the WW function: 
the L6vy distribution has no finite moments and it is 
inconsistent with processes occurring in a material of 
finite size. 

In the present work we considered the application 
of the WW relaxation function to the analysis of the 
following phenomena: 

(a) mechanical stress relaxation in compression tests 
on CoO single crystals betwen 77 and 289 K; 

(b) enthalpic relaxation in amorphous selenium 
around Tg, and 

(c) dielectric relaxation of YzO3-fully stabilized ZrO2 
(Y-FSZ, 9.4% mol yttria). 

It is noteworthy that this set of diverse experiments 
covers the broad interval between 10-5 and 107s for 
the characteristic relaxation times. We begin by pre- 
senting the experimental results of the above men- 
tioned relexation phenomena. Next, we discuss and 
compare these results in terms of the WW law. Then, 
we include our procedure in obtaining the distribution 
function of relaxation times (DRT), 9 (~), where ~ is the 
relaxation time associated with an elemental process. 
Some comments about the method of successive ap- 
proximations of Agrawal and Zhang [11] are added. 
Because the equations governing the response of re- 
laxing systems may be described by either a DRT 
function or an activation energy spectrum (AES), we 
establish the AES associated with the WW behaviour. 
A sophisticated method, which improves the Primak 
"energy derivative" approximation [12-1, is used to 
calculate the detailed shape of the spectrum. Finally, 
in light of the above results, we support the usefulness 
of the WW description in the frame of linear relax- 
ation phenomena. 

2. Experimental procedure 
2.1. Mechanical relaxation experiments 
In order to test the validity of the WW law for this 
kind of experiment we employed CoO single crystals 
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which were grown by the zone-melted technique in an 
arc image furnace. The sintered rod which feeds the 
melt was obtained from high-purity powder (Johnson 
Mattey). The crystals were oriented using the back- 
reflection Laue X-ray technique; they were cut along 
(1 00) faces to give parallelepipeds of sizes between 
2 x 2 x 5 mm 3 and 3 x 3 x 5 mm 3. The specimens were 
annealed in air to 1473 K for 2 days and air-quenched 
to room temperature prior to mechanical testing. 

Compression tests at a constant crosshead velocity 
(20 ~tm min-  1, strain rate g = 7 x 10- 5 s-  1) were per- 
formed in an Instron machine with the equipment 
already described [13, 14]. The temperatures selected 
were 77, 273 and 293 K (room temperature). In this 
temperature interval, the yield stress, ao.2o/o, increases 
very quickly as temperature decreases below 273 K 
[14] suggesting a thermally activated mechanism 
which controls the glide of dislocations. For each 
temperature, relaxation stress tests were achieved at 
two different plastic strains (0.5% and 1%). In the 
relexation experiments the crosshead is abruptly stop- 
ped in the plastic domain at the initial external stress, 
a(0), and, subsequently, the system progresses towards 
its new equilibrium condition so that the instan- 
taneous external stress, o-(t), decreases with time to- 
wards its final value, a( oe ). 

2.2. Enthalpic relaxation experiments 
through the Tg region 

The experiments of enthalpic relaxation analysed 
in the present work, which were conducted using 
a Perkin-Elmer DSC-IIC differential scanning calori- 
meter, were described in detail elsewhere [15, 16]. In 
order to achieve the best repetitivity of the measure- 
ments, the rejuvenation method or cyclic experiment 
(cooling-annealing-heating) was adopted [16-18]. 
Such an experiment consists in cooling the sample 
through the Tg zone, from To (in an equilibrium state) 
to Tv (temperature of isothermal hold), and sub- 
sequent reheating to To. The cooling and heating rates 
were similar (Table 1 summarizes the main parameters 
defining the experimental conditions). 

The following substantial advantages may be ex- 
pected from the cyclic experiment schedule. 

(i) All experiments are carried out on the same 
amorphous sample. In practice, this question is very 
important because small changes in the preparation 
conditions can often produce large changes in the 
relaxation rates of the glass. 

(ii) The experiment may be modified to allow 
a more complicated T-history (e.g. two or more T- 

T A B L E  I. Values of the parameters defining the DSC cyclic ex- 
periment. Cpl, Cpg and ACp are, respectively, the measured values 
for the heat capacity of the liquid and the glass and its difference 

To 340 K 
Tv 296 K 
q + =  [q [  2 0 K m i n  1 
Cpl 35.68 J mo l -  1 K -  l 
Cp~ 24.42 J mol-1  K l 
ACp 11.26 J mol 1 K i 
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steps) for which it is much easier to separate the 
thermal and structural contributions to the elemental 
relaxation times. 

With respect to the amorphous selenium samples, 
thin films about 1.5 p.m thick were prepared by the 
vacuum evaporation of Johnson-Mattey selenium 
(99.999% purity) at the residual pressure of 
2 x 10-* Pa. Glass substrates were used and kept at 
room temperature during deposition. The non-cry- 
stallinity of the specimens was checked on control 
samples by means of calorimetric scan tests and trans- 
mission electron microscopy (TEM) experiments in- 
cluding selected-area electron diffraction (SAD). 

2.3. Dielectric relaxation experiments 
Samples for this study were single crystals of 9.4 mol% 
Y203-fully stabilized ZrO2 (Y-FSZ) grown by the 
Skull melting method. These samples were oriented by 
the Laue X-ray back-reflection technique such that 
crystals with 10 mm x 10 mm major surfaces parallel 
to {100} or {111}, about 4501am thick, were cut, 
polished and finished with 3/am diamond paste. Gold 
electrodes were then evaporated on both major faces. 

Measurements were performed by the two-probe 
complex impedance dispersion technique in the range 
between 423 and 673 K. Temperature was controlled 
to _+ 1 K for this kind of experiment. The frequencies 
analysed were between 100 Hz and 1 MHz. 

3. The W i l l i a m s - W a t t s  response 
func t ion  

The course of relaxation is controlled by the change of 
a certain parameter, P(t), which is connected with the 
degree of deviation of the system from equilibrium. 
For the normalization of the response, the following 
function of P(t) is convenient 

P(t) - P( ~ ) 
~ ( t )  - (1 )  

P(O) - P( ~ ) 

t being the time, and where we denote in brackets the 
appropriate instances of time. The most widely used 
function which represents qb(t) was proposed by 
Williams and Watts [3] 

~(t) = exp[ - (t/to) p] (2) 

to being a characteristic relaxation time and 
[3 (0 < f3 _< 1) is a non-dimensional relaxation para- 
meter which is inversely proportional to the relax- 
ation-time-distribution width. 

It is postulated [9] that ~(t) might be expressed as 
a superposition of single relaxation exponentials 

= ~og( 'c)e- ' /~dr  (3) ~)(t) 

where g(z) is a normalized distribution of relaxation 
times 

fi ~g(t)d~ = 1 (4) 



The average relaxation time may be written as 

"[o <~> = ~- r(1/13) (5) 

corresponding to the integrated area of the WW func- 
tion. Higher moments are given by 

fo {z n) = ~"g(~) d~ 

~ F(n/13) 
- (6)  

I~ r(n) 

Likewise, average relaxation frequencies can be de- 
fined 

( o " > =  

d"qb(0) (7) 
= ( - 1 ) "  dr" 

but the derivative of the WW function is given by 

dO(t) = _ [3 (t/~o)~- t4j(t) (8) 
dt % 

which diverges at t = 0. Therefore, that the derivat- 
ive diverges as t--+ 0 could preclude a physical inter- 
pretation of the WW function [10, 19]. 

The formalism of the DRT has been shown to be of 
considerable value in understanding relaxation pro- 
cesses in amorphous materials. The way into derive 
the g(z) function from the experimentally available ~o 
and 13 parameters will be considered later. 

4 .  R e s u l t s  

4.1.  M e c h a n i c a l  re laxa t ion  
We show in Fig. 1 the dependence of the relaxed stress 

P(t) = ~ ( 0 ) -  cy(t) (9) 

with the elapsed time for a plastic strain of 0.5% and 
the three selected temperatures mentioned above. 

In a qualitative fashion we observe the following 
outstanding features: 

(i) the time to reach the final equilibrium increases 
with increasing the temperature; 

(ii) likewise, the asymptotic P( oo ) value, which in- 
dicates the whole relaxed stress, increases with in- 
creasing T; 

(iii) the shape of the curve relative to 77 K is clearly 
different to those representative of 273 and 289 K. 

Taking into account our definition of P(t) for this 
kind of experiment, we have P(0) = 0. Thus one can 
write 

P(t) = P( oo ) [1 - e ,no)~] (10) 

We now at tempt  to calculate the characteristic 
parameters of the WW law: % and ft. A note should be 
added here concerning the difficulty of obtaining accu- 
rate values of P( oo ) except for the lowest temperature 
experiment. Therefore, we have, in fact, three adjust- 
able parameters in Equation 10 (namely, %, 13 and 
P( oo )) which can be obtained by using a non-linear 
least-squares routine. In practice, we have applied the 
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Figure 1 Time dependence of the relaxed stress for the CoO sam- 
ples at a 0.5% plastic strain and the experimental temperatures: (O) 
77K, ( + ) 273K and ( I )  289 K). 

TAB LE I 1 Levenberg-Marquardt least-squares fit parameters of 
the WW dependence for mechanical relaxation experiments 

T(K) ~;(%) P (oo) (MVa) %(s) 

77 0.5 4.0 (1) a 14.7 (4) 0.83 (2) 
1 4.3 (1) 16.3 (4) 0.81 (2) 

273 0.5 4.2 (2) 54 (2) 0.57 (3) 
l 4.6 (2) 41 (2) 0.66 (3) 

289 0.5 5.69 (3) 71 (4) 0.55 (3) 
1 7.28 (5) 73 (5) 0,62 (4) 

a The figures in parentheses, here and elsewhere in the tables, indi- 
cate the standard deviations (referred to the least significant digit) as 
estimated in the refinement. 

Levenberg-Marquardt  method [20] and the results 
are reported in Table II. A quick look at these results 
confirms the qualitative observations already men- 
tioned. Moreover, the shape of the curves, which de- 
pends on the 13 exponent, proved to be similar (within 
experimental error) for the highest temperature ex- 
periments but different from that obtained at 77 K. By 
using the non-dimensional coordinates P(t) /P(oo) 
and t /% we show in Fig. 2 the coincidence of the 
curves corresponding to the higher temperatures. 
A similar consideration may be done from Fig. 
3 where the same non-dimensional representation is 
performed for 77 K and the two plastic strains ana- 
lysed. From Fig. 3 and Table II it is clear that the only 
meaningful change observed when increasing the plas- 
tic strain corresponds to a small increase in the 
asymptotic value P( oo ). 
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Figure 2 Comparison of the mechaical relaxation responses in 
a non-dimensional plot. The coincidence of the curves for the higher 
temepratures may be observed. (0) 77 K, ( + ) 273 K, ( I )  289 K. 
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Figure 3 Non-dimensional plot as in Fig. 2, but for 77 K and the 
two plastic strains analysed: (Q) 142 MPa, ( I )  158 MPa. 

where 7 is a geometric factor, b the length of the 
Burgers vector and b the average dislocation velocity. 
In this case, the dislocation flow is related to the 
thermal activation of dislocations which is governed 
by a stress-dependent Gibbs free energy 

AG = AGo - W (13) 

where W is the work done by the applied stress and 
AGo is the Gibbs free energy in the absence of any 
external constraint [26]. Then it may be interpreted 
that the applied stress decreases until the effective 
height of the barrier, AGo - W, is sufficiently large to 
prevent the dislocations jumping over the barrier by 
thermal fluctuations. Thus the well-known reaction 
theory supports our qualitative observations (i) and 
(ii)~ In fact, tests performed at higher temperatures 
need more time and a greater relaxed stress, in order 
to stop the plastic deformation, than do the lower 
ones. 

Finally, Fig. 4 shows how the relaxed stress P(t) may 
be fitted to the empiric relationship of Feltham [27] 

P(t) = Xlg(1 + ut) (14) 

where u is a constant and X is associated with the 
activation volume [24], V*, by 

k T  
= (15) 

v * f  

f being the Schmid factor for the activated slip system 
0c= 0.5 in our case [14]). Such a relationship predicts 
that a plot of P(t) versus lgt gives a straight line 
provided that t >> 1/v. The magnitude of the activation 
volume and the temperature, stress and strain depend- 
ence assist in identifying the rate-controlling deforma- 
tion mechanism [28]. The values obtained for the 
activation volume at 77 K ( -~ 30 b 3) and their strain 
independence, suggests that the Peierls mechanism is 
operative. This last result for the 77 K experiment is 
consistent with its calculated 13 value, fairly close to 
1 (usual values for 13 are in the range 0.3-0.6) which 

Several theoretical approaches have been proposed 
to interpret the stress relaxation experiments [21-25]. 
The equation describing the plastic strain rate during 
the relaxation, ~p, is given by 

8p = - 81 

6 
(11) 

Ec 

where Ec is the combined elastic modulus of the speci- 
men-machine system and ~1 is the elastic strain rate. 
Thus, during the test the sample continues to deform 
plastically at a decreasing rate under the action of 
a decreasing applied stress. On the other hand, if the 
mobile dislocation density, Pm, is unchanged during 
the test, the/;p dependence express the evolution of the 
dislocation velocity according to the Orowan equa- 
tion 

E;p = Tpmb'# (12) 
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Figure 4 Feltham plot for the 77 K experiment. 
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supports the existence of a single mechanism control- 
ling the low-temperature deformation. 

4.2. Structural relaxation 
Calorimetric measurements performed on amorphous  
selenium were the basis of this kind of experiment. Fig. 
5 shows several DSC scans obtained after successive 
annealing stages at 296K. During the cyclic experi- 
ments, all the heating or cooling rates were 
20K min -1. Fig. 6 displays the experimental time 
dependence of ~(t) for several annealing temperatures 
lower than Tg when the excess enthalpy (the enthalpy 
relaxed during annealing and reabsorbed by the glass 
to reach its metastable equilibrium) was taken as the 
P property sensitive to the relaxation of amorphous 
selenium. In this figure, the solid lines correspond to 
the least-squares fit of the experimental data to the 
WW law allowing us to obtain the % and 13 values 
collected in Table III. As can be seen in the table an 
increase in the temperature of the isothermal hold 
decreases drastically the value of Xo and increases 
slightly the value of 13. This last observation indicates 
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Figure 5 Heat capacity versus temperature through the glass 
transition region after successive annealing stages at 296K. 
q = 20K min:-k 

T A B L E 111 Values of r0 and 13 obtained from the enthalpic relax- 
atlon of amorphous selenium at different temperatures 

T (K) "to (h) 13 

279 4874 (50) 0.36 (1) 
296 16,3 (4) 0.41 (1) 
305 3.0 (1) 0.43 (2) 
309 0.89 (4) 0.52 (3) 

a gradual narrowing of the associated DRT as we 
approach the glass transition temperature 
(Tg-~ 320K for a heating rate of 20K min--1). 

4.3.  Die lect r ic  r e l axa t ion  
The dielectric spectroscopy measures the response of 
materials to a sinusoidal electric field, E, of angular 
frequency, co (usually in the range of audio or radio 
frequencies). The complex permittivity s*(eo) is the 
function relating the applied electric field and the 
resulting electric displacement, D. It is customary [4, 
29] to introduce the complex dielectric modulus, 
M*(o)), as the inverse of ~*(~). It has been shown [30] 
that 

M*(c0) = 1/e*(eo) 

= Ms g('c)[ico'c/(1 + i~r)]d~ (16) 

=Ms{l-foO('O[1/(l+icoz)]dz } 
= Ms[1 - N*(co)] (17) 

where Ms is the high-frequency limit of the real part of 
M*(o3), g(z) corresponds to the above-mentioned nor- 
malized DRT and N*(co) is a relaxation function in the 
frequency domain. Moreover 

N*(co) = N ' (eo) -  iN"(eo) 

jo  dt J (18) 

1.0- 

0.8 

~0.6. 

0.4 

0.2. 

0.0 

\ % 

Ln t (In h) 

Figure 6 The excess enthalpy relaxation function corresponding to amorphous selenium for several annealing temperatures lower than Tg. 
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Thus, N*(0)) may be expressed as the one-sided 
Fourier transform of the derivative of the relaxation 
function in the time domain. 

Fig. 7 shows the real and imaginary parts of the 
complex dielectric modulus, M'(0)) and M"(0)), versus 
normalized frequencies for a Y-FSZ sample (the tem- 
perature of the experiment was 503 K). The shape of 
M"(0)), broad and skewed toward the high-frequency 
side, appears to call for a distribution of relaxation 
times. 

In practice, the problem arises in relating the experi- 
mental response, M*(0)), with the parameters to and 
13 of the WW law describing the relaxation in the time 
domain. The most simple and rough way to derive 
these parameters for a sinusoidal excitation is to com- 
pare the experimental results with a set of previously 
calculated curves [4, 31]. Then, we try to fit the main 
characteristic features of the experimental curves: i.e. 
the maximum of M"(o3) and its position, the width of 
M"(0)) at half-height, the half-height position on the 
low frequency side, . . . ,  etc. In the present paper we 
propose the following numerical approach: integra- 
tion by parts yields 

1 - -  imi'~~ i~'~(t)dt (19) 
4 0  

N* (0)) = 

Then, if we let 

N"(m) 
if(m) - (20) 

0) 

u"(~) - 1 - N'(0)) (21) 
0) 

we find 

~(t) = e x p [ -  (t/%) ~] 

= l/2 [foU'(o#coso tdo  

+ .f~ U . . . .  7 
tin) sin0)t d0)J (22) 

Subsequently, by using a linear fit of In In[1/qb(t)] 
versus In t, it is easy to obtain the values of 
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Figure 7 ( ) Normalized real and imaginary parts of M* (09) 
versus the normalized frequencies ~oo = 2n/xo for a Y-FSZ sample 
at 503 K. (Q, o) Reconstructed M*(e)) response, via Equations 17 
and 24, and illustrating the goodness of our 13 and g ('r) estimations. 
(@) M'/Ms, (e) M"/M~. 
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to and 13 which, in our case, were found to be 
z o =  1.8x10 5sand13=0 .57 .  

Once we have derived the WW parameters, quite 
often the work is directed toward the determination of 
the associated g(~) function [4, 9, 29]. In fact, 9(~) may 
be obtained from the inverse Laplace transformation 
of the WW decay function, as suggested by Pollard 
[323. In many practical cases, a series expansion of the 
integral equation is performed but considerable atten- 
tion must be paid to the convergence of the series. In 
this paper, 9(~) is obtained from a modified .version of 
the integral representation of Pollard, by means of 
a 32-point Gauss-Laguerre quadrature 

fo G(s) = 1/n e-Z{e (zs? . . . .  

x sin[(zs) ~ sin ~13]} dz (23) 

where g(r) = G('t)/'c and s = U~o. Fig. 8 shows several 
DRT functions corresponding to WW response func- 
tions with 13 = 0.1, 0.3, 0.5 and 0.7. 

In order to test the accuracy of the obtained WW 
parameters we have recalculated the M*(0)) function 
from the previously estimated 13 and % values by 
means of the following relationship for N*(0)) [30] 

N*(0)) = Z gJ (24) 
j =  1 1 + i0)'Cj 

which may be easily calculated by adopting a discrete 
representation for qb(t) 

(p(t) = ~, 9,e - 'm (25) 
i = 1  

where the coefficients gi are a discret izat ion of g(~). 
Once we have obtained the N*(0)) function, the 

complex dielectric modulus is calculated according to 
Equation 13: the dots in Fig. 7 correspond to our 
recalculated M*(0)) values which are in excellent 
agreement with the experimental ones. 
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Figure 8 Distribution of relaxation times corresponding to the WW 
response for several values of 13. 



5. Estimation of g(t) by successive 
approximations 

As mentionedabove,  the g(~) function corresponds to 
the inverse Laplace transform of the relaxation re- 
sponse function q~(t). Because qb(t) cannot be expressed 
such that a closed solution of 9(~) can be obtained, 
a number of approximate methods have been sugges- 
ted [11, 33-35]. Recently, Agrawal and Zhang [1 I] 
have proposed the most simple method to approxim- 
ate the g(z) function, based on some relationships 
deduced by Schwarzl and Staverman [35]. In practice, 
they find that the DRT can be evaluated by 

g~(ln z) = - I dqb/d In t l,-~ (26) 

g2(ln r) = - I dqb/dln t - d2qb/d(ln 02 It= 2, (27) 

gs(lnl:) == 

gr = 

- I dr  t - 3/2d2qb/d(ln 0 2 

+ 1/2d3~b/d(ln 0 3 ]t=s~ 

- t dr  t - 11/6 d2c~/d(ln t) 2 

(28) 

+ d3qb/d(ln 0 3 -- 1/6 d'*qb/d(ln 04 I,-4,(29) 

and so on, where 9~ (In z) is the first-order approxima- 
tion and each higher approximation is closer to the 
true distribution: 9 ~ . -  g('0. However, they do not 
evaluate the true g(z) and limit themselves to generate, 

by an iterative process, successive distributions until 
the peak value of the next higher order did not vary 
from the preceding one by a certain percentage. It is 
evident that this method of exploring the validity of 
the proposed approximations strongly fails whenever 
the convergence rate is slow. Insofar as we can calcu- 
late the true 9(z) by the method outlined previously, 
we can perform a quick check on the order of approx- 
imation that would be required to generate a signific- 
ant distribution function by this approximate method. 

By adopting the WW dependence for 0(t) and ap- 
plying the useful relation 

dO/In t = tO din dp/dt (30) 

the succesive differentiations of qb follows 

dd~/dln t = 13qb In qb (31) 

d2r z = 132qbln q b(1 + lnqb) (32) 

d3d~/d(ln/7)3 = ~3(~ In ~ {In ~ 4- (1 4- In (~)2} (33) 

and so on. From these expressions the g.(r) approx- 
imations are readily evaluated. 

Fig. 9 shows the true 9(lnz) function (from 
]3 = 0.2-0.8) besides its successive approximations un- 
til the fourth-order versus normalized relaxation 
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Figure 9 The first Agrawal four orders of approximation (dashed lines) and ( ) the true g (In ~) distribution versus normalized relaxation 
times (z/r0). (a) 13 = 0.2, (b) 13 = 0.4, (c) 13 = 0.6 and (d) 13 = 0.8. ( - - - -  - - )  first order, ( - - )  second order, ( - - - )  third order, (-- - ) fourth 
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T A B L E  IV Goodness estimation of the successive approxima- 
tion orders to the true g(r) distribution. The estimation is based on 
d (the percentage of the differences between the first four orders and 
the true distribution) 

d (%)  

13 1st order 2nd order 3rd order 4th order 

0.2 6.21 2.97 1.95 1.46 
0.4 17.66 9.79 6.87 5.40 
0.6 36.49 22.90 16.58 13.06 
0.8 64.19 48.14 39.26 33.84 

times, r/z0 (Zo is the characteristic relaxation time of 
the WW dependence). A figure of merit (the percent- 
age of the difference with respect to the true g(ln ~)) is 
evaluated in order to quantify the goodness of the 
respective approximations. The results are displayed 
in Table IV. It may be appreciated that the number of 
higher order approximations needed to produce the 
true spectrum depends on its sharpness and the qual- 
ity of the approximation increases insofar as the shape 
of the distribution is wider. This observation agrees 
with Agrawal and Zhang's [11] result. In fact, 13 = 0 
indicates an infinitely wide distribution while 13 = 1 
corresponds to a single relaxation time. Our results 
indicate that this approximate method appears re- 
liable whenever 13 is less than 0.2: in this case the first 
order of approximation yields a satisfactory estimate 
of 9(ln~), and we disagree with the estimations of 
Agrawal and Zhang [11] about the order of approx- 
imation required to generate a significant distribution 
for each value of 13. For example, Agrawal and Zhang 
have studied the volume relaxation of polystyrene 
with [3 = 0.36 and have found that a second-order of 
approximation suffices for a 5% error level. However, 
from Table IV it can be deduced that for this case, 
a fourth-order approximation is needed to reach the 
5% error level. In practice, moreover, the observed 
values of 13 varies from 0.3-0.6 and for this reason we 
think that this approximate method which works well" 
for very low values of 13 which do not occur in practice, 
is not satisfactory. For the other cases, the method 
demands higher orders of approximation, losing its 
simplicity and becoming non-competitive with the dir- 
ect method to calculate the true g(ln r). 

6. Activat ion energy spectra and 
the Wi l l iams-Wat ts  response 

Much past work associated with the structural relax- 
ation in amorphous materials was based on the Gibbs 
et al. [36] activation energy spectrum (AES) model 
and with the pioneering Primak's work [12]. In the 
AES model, the change during relaxation at temper- 
ature, T, of a measured property, AP, is expressed by 
means of a Volterra integral equation of the first kind 

fo AP(t) = po(E)O(E, T, t )dE (34) 

with kernel the characteristic annealing function, 
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0(E, T, t), and where po(E) is the total property change 
in the energy range E to E + dE. 

Following Primak [123, and assuming first-order 
reaction kinetics, the annealing function can be 
expressed as 

0(E, T, t) = 1 - exp[ - uotexp( - E/kT)]  (35) 

Uo being an attempt frequency and k the Boltzmann 
constant. In fact, the functional form of 0(E, T, t) 
versus E, for given experimental values of T and t, is 
that of a sharp step at an energy Eo = k T  In Uot. 
Therefore, if we have to deal with broad and smooth 
AES we can replace the 0 function by a step function: 
for E_< Eo, the function has value of 1, and 0 for 
E > Eo. This approximation for 0 (E, T, t) as a step 
function is equivalent to assuming that during an 
isothermal anneal, at time t, all processes with E < Eo 
have contributed to the relaxation, whereas processes 
with E > Eo have yet to contribute. 

In the frame of this step-like approximation (the 
energy derivative method), one can easily prove that 
po(E) is given by 

1 dAP 
po(E) - k T d l n t  (36) 

In practice, according to the WW representation, we 
obtain the normalized spectrum 

po(E) 
f~(E) - Po - P ~  - (13/kT)qb(t)(t/Zo) ~ (37) 

The maximum of fl(E), f~ . . . .  and its position, E . . . .  
are given by 

nm,x = e - '  13 (38) 
k T  

Ema X = k T  (In UoZo + 7) (39) 

y oeing the Euler's constant (y = 0.577 . . . . .  ). It is 
sometimes suggested [37] that the temperature inde- 
pendence of the AES is a likely and plausible first 
assumption which stems from the "thermo-rheological 
simplicity principle". Consequently, the AES obtained 
from the same experiment but for different temper- 
atures might superpose over a single AES. We have 
shown [37] that this requirement is equivalent to 
admitting a Zo thermally activated. This assumption 
allows us to obtain unambiguously the frequency fac- 
tor, Uo [37]. 

Unfortunately, it is no longer possible in practice to 
support the drastic assumption about 0(E, T, t) and 
there is a need to develop a better and more general 
procedure of calculus: instead of calculating a continu- 
ous spectrum po(E), we will calculate a discrete one: 
i.e. a discrete number of points Poj at certain energies, 
Ej 

E j  + A E / 2  

Pos = (1/AE) po(E) dE (40) 
d E j  - A E / 2  

By means of this step-wise approximation, the Vol- 
terra equation can be replaced by a set of linear 
equations which, in matrix notation, becomes 

A P  = Ap (41) 



where AP and p are column matrix with n rows (n is 
the number of data points) and A is a nth order square 
matrix of the form 

f 
Ej + AE/2 

Az,j = O(tz, E) dE (42) 
E j -  AE/2 

Equation 41 has the solution 

p = A -  1 AP (43) 

It turns out, however, that Equation 41 forms a so- 
called "ill conditioned" system resulting in very unsta- 
ble solutions. In practice, resorting to the variational 
Cook's "least structure analysis [38, 39] allows us to 
get smooth and stable solutions. In this method, 
a structure function S(p)is  defined as a fourth differ- 
ence operator satisfying our intuitive concepts of 
a structureless function. Thus, our purpose is to find 
the solution which minimizes S(p) under the ~:2 con- 
straint 

K 2 --= ~" ( A P i t -  APie)2/~y 2 = n (44) 
i:1 

APit and APie being the calculated (via Equation 41) 
and the experimental (at time t~) values of APz, respec- 
tively, and ~ is its standard deviation. 

Using methods of variational calculus, the following 
result is obtained 

p = [A + X ( A ) - I ( W ) - I S ] - I A P  (44) 

where k is a Lagrangian multiplier, W is a diagonal 
matrix with elements W,  = 1/cry, A is the transposed 
matrix A and S is the smoothing matrix associated 
to the S(P) operator. 

In order to asses the performance of the method, we 
consider two different experimental cases: 

(i) a broad spectrum corresponding to the enthalpic 
relaxation of amorphous selenium around Tg. We 
have in this case 13 = 0.41; 

(ii) the narrow and sharp spectrum obtained from 
mechanical stress relaxation experiments on CoO 
single crystals at 77 K. The choice of this case is related 
to the large value of 13 (13 = 0.83) as it corresponds to 
the presence of only one operative mechanism: the 
Peierls mechanism. 
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Figure 11 The approximate normalized spectra from Fig. 10 versus 
the "exact" discrete results derived by the method outlined in 
Section 6. 

Fig. 10 shows, on the same scale, both AES which 
were calculated by the approximate method. Let us 
consider the maximum of the broad spectrum 
(E _ 2.1 eV at-1): this result is in agreement with the 
Se-Se bond energy in trigonal-like chains and with the 
Perez interpretation [40, 41]. On the other hand, the 
maximum of the narrow spectrum is located at 
E _~ 0.2 eV at-1. This last value is intermediate be- 
tween those associated with the Peierls stress for screw 
dislocations (0.15 eV a t -  1) and that for edge disloca- 
tions (0.32 eV a t -  1) [42]. 

Fig. 11 displays the approximate AES versus the 
exact ones. Both kinds of spectra are in fairly good 
agreement but the following comments may be made: 

(i) the approximate spectra are skewed towards its 
low-energy side, while the "exact" ones are more sym- 
metrical; 

(ii) the reliability of the approximate AES appears 
to be inferior for the narrow spectrum. In fact, for this 
case, a slight shift between the maxima of both distri- 
butions may be appreciated. 

Otherwise, the calculus complexity is by far su- 
perior for the new method and its application should 
be limited to the situations where it is called for. Thus, 
resort to the Primak's approximation appears widely 
justified if we are dealing with a broad and smooth 
spectrum and we are mainly interested in its general 
shape. 

Figure 10 Comparison between the normalized approximate 
spectra describing the enthalpic relaxation of selenium (broad spec- 
trum) and the stress relaxation CoO (sharp spectrum). Note the 
marked contrast between them. 

7. C o n c l u s i o n s  
The main conclusion of this paper is that a large 
variety of relaxation phenomena for a wide class of 
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materials are well described by the WW function. It is 
worthwhile to remark that the response span covered 
by the different experiments analysed includes a broad 
interval of many decades in time for the characteristic 
relaxation times. Though the natural domain of the 
WW function is time, it has also been used with 
frequency domain data from dielectric-spectroscopy 
measurements. From this work, a connection between 
the relaxation function in the frequency domain and 
its corresponding WW transient response is estab- 
lished. On the other hand, miscellaneous topics re- 
lated with the DRT or AES descriptions associated 
with the WW dependence have been discussed. The 
physical realisability of the obtained AES is supported 
by the simple and meaningful interpretation of the 
activation energies associated with its maxima. Then, 
in spite of some formal anomalies [10], we claim the 
utility of the WW representation. In fact, recent works 
[19, 43] show that the "universal" Havriliak-Negami 
frequency relaxation function (widely used to describe 
data from dielectric spectroscopies) fit closely the ex- 
pected WW response. As pointed out by Alvarez et al. 

[19] the existence of simple empirical laws accounting 
for a variety of results, obtained by different probes 
over very different time-scales, strongly suggests that 
these relaxation phenomena should be projections 
of the same microscopic structural relaxation 
mechanisms. 
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